
CVPR2012 Providence, RI, USA

PCL :: Object Detection – LINEMOD
Stefan Holzer, TU Munich (TUM)

Stefan Hinterstoißer, TU Munich (TUM)
June 17, 2012

Overview

Goal for today: Object Detection using PCL

- Introduction to Template-Matching : LINEMOD

Multimodal Templates for Real-Time Detection of Texture-less Objects in Heavily
Clutered Scenes, S. Hinterstoißer, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N.
Navab, V. Lepetit, ICCV 2011

- How to: Learn Objects using PCL

- How to: Detect Objects using PCL

Motivation

Daily objects often do not show much Texture.

[Courtesy of M. Bollini and D. Rus, MIT] Some more examples…

Aims for Texture-less Objects:

Motivation

Aims for Texture-less Objects:

Objects used in Industry are often Texture-less.

[Courtesy of M. Ulrich, C. Wiedemann
and C. Steger, ICRA 2011]

 Some more examples…

Motivation

ÅLack of Interest Points – prevents
search space reduction influencing
efficiency

ÅLack of Texture – makes it difficult

to build discriminative descriptors
influencing robustness/reliability

Texture-less objects:

Motivation

Aims for Cluttered Scenes:

Industry

Household

Conventions

Motivation

ÅMany false positives - require

post-processing

ÅNeed for exhaustive search in

the full image

ÅContamination of grid-like
descriptors because of changing
background

background

object

Regular grid

Clutter causes:

LINEMOD

Using Multimodal Templates

ÅCombining color and depth information
 Ą Improves detection of Texture-less Objects
 Ą Improved handling of Cluttered Background

Efficient Implementation enables Real-Time Performance

ÅQuantizing and spreading the feature values
ÅPrecomputing response maps
ÅLinearizing the memory

Training Stage

Database of Templates

t-1

t

ÅLearning Objects simply means adding Templates to the Database.

 few milliseconds per template

ÅView-point dependent templates keep information about their
approximate pose

9

Modalities

2D Color Gradients 3D Surface Normals Multiple Modalities

Color Gradients and Surface Normals are Complementary!

Template is not
constrained by
the use of a
regular grid!

: Color gradient on the template

Modalities

2D Color Gradients
Computation:

 [Dalal et al. CVPR05]

 (Gray Value Gradients) (Color Gradients)

Similarity Measure:

: Color gradient on the input image

Modalities

3D Surface Normals

 (Depth Image) (Normal Image)

Similarity Measure:

: Surface Normal on the template

: Surface Normal in the input image

Detection Stage

We can’t use Interest Points for efficient Object Localization!

Current Scene Template

Compute Similarity
measure at each position

Therefore, we have to use a Sliding Window Approach:

Naïve Sliding Window is inefficient: how can we make it fast?

Detection Stage

Efficient Implementation of our Similarity Measure:

1. Spreading the features
2. Precompute Response Maps
3. Use Look-Up Tables
4. Linearize the Memory

Spreading Features

We first quantize the features and spread
them around their initial position.

Data of every modality is
quantized in 8 bins, e. g.:

 = 00 00 00 01

 = 00 00 00 10

 = 00 00 01 00

Spreading Features

We first quantize the features and spread
them around their initial position.

Spreading Features

We first quantize the features and spread
them around their initial position.

Spreading Features

We first quantize the features and spread
them around their initial position.

00100 00100 00100 00000

00110 00110 01110 01000

00110 01110 11110 11000

11000 01010 00010 11010

Binarized Image

Feature spreading can be efficiently
implemented using the OR operator

Detection Stage

Efficient Implementation of our Similarity Measure:

1. Spreading the features
2. Precompute Response Maps
3. Use Look-Up Tables
4. Linearize the Memory

Response Maps

1 1 1

1 1

1 1 1

0.7

0.7

0.7 0.7 0.7 0.7

0

Response Map for Feature :

max(|cos(,)|, |cos(,)|, |cos(,)|)

Computation of Response Map for Feature :

= |cos(,)|

= 1

1

Response Maps

Computation of Response Map for Feature :

max(|cos(,)|, |cos(,)|, |cos(,)|)

0 0 0

0.7 0.7

0.7 0.7 1

0.7

 1

 1 1 0.7 0.7

0

Response Map for Feature :

0.7

= |cos(,)|

= 0.7

Detection Stage

Efficient Implementation of our Similarity Measure:

1. Spreading the features
2. Precompute Response Maps
3. Use Look-Up Tables
4. Linearize the Memory

Response Maps

00100 00100 00100 00000

00110 00110 01110 01000

00110 01110 11110 11000

11000 01010 00010 11010

Look-Up Table for

- -

- -

01110 1

- -

Computation of Response Map for Feature : Efficient
 Implementation using
 Look Up Tables

1 1 1

1 1

1 1 1

0.7

0.7

0.7 0.7 0.7 0.7

0

Response Map for Feature :

1

Detection Stage

Efficient Implementation of our Similarity Measure:

1. Spreading the features
2. Precompute Response Maps
3. Use Look-Up Tables
4. Linearize the Memory

Linearize Memory

Due to the feature spreading we have invariance to small
translations. Therefore we only have to consider each ƛΨǘƘ pixel…

Linearize the gradient response maps: - SSE instructions
 - Avoid cache misses

Linearize Memory

Due to the feature spreading we have invariance to small
translations. Therefore we only have to consider each ƛΨǘƘ pixel…

0.7 1

0 0.7

0

1 0.7

0

0.7 1

0.7 0

1 0.7

0 0

Precomputed
Response
Map for :

T=2

T=
2

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Linearize the gradient response maps: - SSE instructions
 - Avoid cache misses

Linearize Memory

Due to the feature spreading we have invariance to small
translations. Therefore we only have to consider each ƛΨǘƘ pixel…

0.7 1

0 0.7

0

1 0.7

0

0.7 1

0.7 0

1 0.7

0 0

Precomputed
Response
Map for :

T=2

T=
2

Lin , 1 : … 0.7 1 0.7 0 …

Lin , 2 : … 0 0 1 0.7 …

Lin , 3 : … 0.7 1 0 0.7 …

Lin , 4 : … 1 0.7 0 0 …

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Linearize the gradient response maps: - SSE instructions
 - Avoid cache misses

Code

We provide two classes:

 - pcl::LINEMOD
 - Contains actual implementation of LINEMOD
 - Independent of specific modalities
 Ą allows implementation of new types of modalities

 - pcl::LineRGBD<PointXYZT, RGBT>
 - Simplyfied interface for special case
 - Modalities: Surface Normals, Max Color Gradients

Code

Training and Detection are very simple with LineRGBD

se
tu

p

tr
ai

n
in

g
d

et
ec

ti
o

n

Questions?

Questions?

