Documentation: http://docs.pointclouds.org/trunk/group__io.html

Tutorials: http://pointclouds.org/documentation/tutorials/#i-o
Documentation: http://docs.pointclouds.org/trunk/group__visualization.html

Tutorials: http://pointclouds.org/documentation/tutorials/#visualization-tutorial
- irregular density (2.5D)
- occlusions
- massive amount of data
- noise
Modifying the point cloud or point attributes.

- **Removing Points:**
 - Conditional Removal
 - Radius/Statistical Outlier Removal
 - Color Filtering
 - Passthrough

- **Downsampling:**
 - Voxelgrid Filter
 - approximate Voxelgrid filtering

- **Modifying Other Point Attributes:**
 - Contrast
 - Bilateral Filtering
All filters are derived from the **Filter** base class with following interface:

```cpp
template<typename PointT> class Filter : public PCLBase<PointT>
{
    public:
        Filter (bool extract_removed_indices = false);
        IndicesConstPtr const getRemovedIndices ();
        inline void setFilterFieldName (const std::string &field_name);
        inline std::string const getFilterFieldName ();
        inline void setFilterLimits (const double &limit_min, const double &limit_max);
        inline void getFilterLimits (double &limit_min, double &limit_max);
        inline void setFilterLimitsNegative (const bool limit_negative);
        inline bool getFilterLimitsNegative ();
        inline void filter (PointCloud &output);
};
```
Example: Passthrough Filter

```cpp
// point cloud instance for the result
PointCloudPtr thresholded (new PointCloud);

// create passthrough filter instance
pcl::PassThrough<PointT> pass_through;

// set input cloud
pass_through.setInputCloud (input);

// set fieldname we want to filter over
pass_through.setFilterFieldName ("z");

// set range for selected field to 1.0 - 1.5 meters
pass_through.setFilterLimits (1.0, 1.5);

// do filtering
pass_through.filter (*thresholded);
```
Example: VoxelGrid Filter

```cpp
// point cloud instance for the result
PointCloudPtr downsampled (new PointCloud);

// create passthrough filter instance
pcl::VoxelGrid<PointT> voxel_grid;

// set input cloud
voxel_grid.setInputCloud (input);

// set cell/voxel size to 0.1 meters in each dimension
voxel_grid.setLeafSize (0.1, 0.1, 0.1);

// do filtering
voxel_grid.filter (*downsampled);
```
Example: Radius Outlier Removal

```cpp
// point cloud instance for the result
PointCloudPtr cleaned (new PointCloud);

// create the radius outlier removal filter
pcl::RadiusOutlierRemoval<pcl::PointXYZRGB> radius_outlier_removal;

// set input cloud
radius_outlier_removal.setInputCloud (input);

// set radius for neighbor search
radius_outlier_removal.setRadiusSearch (0.05);

// set threshold for minimum required neighbors neighbors
radius_outlier_removal.setMinNeighborsInRadius (800);

// do filtering
radius_outlier_removal.filter (*cleaned);
```
Plane fitting can be supported by surface normals.
How do we compute normals in practice?

- **Input:** point cloud \(\mathcal{P} \) of 3D points \(p = (x, y, z)^T \)

- **Surface Normal Estimation:**
 1. Select a set of points \(Q \subseteq \mathcal{P} \) from the neighborhood of \(p \).
 2. Fit a local plane through \(Q \).
 3. Compute the normal \(\vec{n} \) of the plane.
Available Methods

- **Arbitrary Point Clouds:**
 - we cannot make any assumptions about the structure of the point cloud
 - use FLANN-based KdTree to find approx. nearest neighbors (pcl::NormalEstimation)

- **Organized Point Clouds:**
 - regular grid of points $\text{(width } w \times \text{ height } h)$
 - but, not all points in the regular grid have to be valid
 - we can use:
 - FLANN-based KdTree to find approx. nearest neighbors (pcl::NormalEstimation)
 - or faster: an Integral Image based approach (pcl::IntegralImageNormalEstimation)
Normal Estimation using pcl::NormalEstimation

```cpp
pcl::PointCloud<pcl::Normal>::Ptr normals_out
(new pcl::PointCloud<pcl::Normal>);

pcl::NormalEstimation<pcl::PointXYZRGB, pcl::Normal> norm_est;

// Use a FLANN-based KdTree to perform neighborhood searches
norm_est.setSearchMethod
(pcl::KdTreeFLANN<pcl::PointXYZRGB>::Ptr
(new pcl::KdTreeFLANN<pcl::PointXYZRGB>));

// Specify the size of the local neighborhood to use when
// computing the surface normals
norm_est.setRadiusSearch (normal_radius);

// Set the input points
norm_est.setInputCloud (points);

// Set the search surface (i.e., the points that will be used
// when search for the input points’ neighbors)
norm_est.setSearchSurface (points);

// Estimate the surface normals and
// store the result in "normals_out"
norm_est.compute (*normals_out);
```
Normal Estimation using pcl::NormalEstimation
Normal Estimation using pcl::IntegralImageNormalEstimation

```cpp
pcl::PointCloud<pcl::Normal>::Ptr normals_out
  (new pcl::PointCloud<pcl::Normal>);

pcl::IntegralImageNormalEstimation<pcl::PointXYZRGB, pcl::Normal> norm_est;

// Specify method for normal estimation
norm_est.setNormalEstimationMethod (ne.AVERAGE_3D_GRADIENT);

// Specify max depth change factor
norm_est.setMaxDepthChangeFactor(0.02f);

// Specify smoothing area size
norm_est.setNormalSmoothingSize(10.0f);

// Set the input points
norm_est.setInputCloud (points);

// Estimate the surface normals and
// store the result in "normals_out"
norm_est.compute (*normals_out);
```
Normal Estimation using pcl::IntegralImageNormalEstimation

There are three ways of computing surface normals using integral images in PCL:

1. **COVARIANCE_MATRIX**
 - Compute surface normal as eigenvector corresponding to smallest eigenvalue of covariance matrix
 - Needs 9 integral images

2. **AVERAGE_3D_GRADIENT**
 - Compute average horizontal and vertical 3D difference vectors between neighbors
 - Needs 6 integral images

3. **AVERAGE_DEPTH_CHANGE**
 - Compute horizontal and vertical 3D difference vectors from averaged neighbors
 - Needs 1 integral images
Comparison

Processing time (ms)

Num of considered points

- kNN
- COVARIANCE MATRIX
- AVERAGE_3D_GRADIENT
- AVERAGE_DEPTH_CHANGE

Dirk Holz / PCL Basics
So let's look how we use the normals for plane fitting:

```cpp
// necessary includes
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_normal_plane.h>

// Create a shared plane model pointer directly
SampleConsensusModelNormalPlane<PointXYZ, pcl::Normal>::Ptr model
   (new SampleConsensusModelNormalPlane<PointXYZ, pcl::Normal> (input));

// Set normals
model->setInputNormals(normals);
// Set the normal angular distance weight.
model->setNormalDistanceWeight(0.5f);

// Create the RANSAC object
RandomSampleConsensus<PointXYZ> sac (model, 0.03);

// perform the segmentation step
bool result = sac.computeModel ();
```
If we know what to expect, we can (usually) efficiently segment our data:

RANSAC (Random Sample Consensus) is a randomized algorithm for robust model fitting.

Its basic operation:

1. select sample set
2. compute model
3. compute and count inliers
4. repeat until **sufficiently confident**
If we know what to expect, we can (usually) efficiently segment our data:

RANSAC (Random Sample Consensus) is a randomized algorithm for robust model fitting.

Its basic operation: *line example*

1. select sample set — 2 points
2. compute model — line equation
3. compute and count inliers — e.g. ϵ-band
4. repeat until sufficiently confident — e.g. 95%
Segmentation 2/6
several extensions exist in PCL:

- **MSAC** (weighted distances instead of hard thresholds)
- **MLESAC** (Maximum Likelihood Estimator)
- **PROSAC** (Progressive Sample Consensus)

Also, several model types are provided in PCL:

- Plane models (with constraints such as orientation)
- Cone
- Cylinder
- Sphere
- Line
- Circle
- ...
So let’s look at some code:

```cpp
// necessary includes
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_plane.h>

// Create a shared plane model pointer directly
SampleConsensusModelPlane<PointXYZ>::Ptr model
direct new SampleConsensusModelPlane<PointXYZ> (input));

// Create the RANSAC object
RandomSampleConsensus<PointXYZ> sac (model, 0.03);

// perform the segmentation step
bool result = sac.computeModel ();
```

Here, we

- create a **SAC model** for detecting **planes**,
- create a **RANSAC** algorithm, parameterized on $\varepsilon = 3\text{cm}$, and **compute** the best model (one complete RANSAC run, not just a single iteration!)
We then

- retrieve the best set of **inliers**
- and the corr. plane model **coefficients**
Optional:

```cpp
// perform a refitting step
Eigen::VectorXf coeff_refined;
model->optimizeModelCoefficients
  (*inliers, coeff, coeff_refined);
model->selectWithinDistance
  (coeff_refined, 0.03, *inliers);
cout << "After refitting, model contains"
  "inliers->size () << "inliers";
cout << ", plane normal is: " << coeff_refined[0] << ", "
    << coeff_refined[1] << ", "
    << coeff_refined[2] << "." << endl;

// Projection
PointCloud<PointXYZ> proj_points;
model->projectPoints (*inliers, coeff_refined, proj_points);
```

If desired, models can be refined by:

- **refitting** a model to the inliers (in a least squares sense)
- **or projecting** the inliers onto the found model
Once we have a plane model, we can find

- objects standing on tables or shelves
- protruding objects such as door handles

by

- computing the convex hull of the planar points
- and extruding this outline along the plane normal
ExtractPolygonalPrismData is a class in PCL intended for just this purpose.
// Create a Convex Hull representation of the projected inliers
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_hull
 (new pcl::PointCloud<pcl::PointXYZ>);
pcl::ConvexHull<pcl::PointXYZ> chull;
chull.setInputCloud (inliers_cloud);
chull.reconstruct (*cloud_hull);

// segment those points that are in the polygonal prism
ExtractPolygonalPrismData<PointXYZ> ex;
ex.setInputCloud (outliers);
ex.setInputPlanarHull (cloud_hull);
PointIndices::Ptr output (new PointIndices);
ex.segment (*output);

Starting from the segmented plane,

- we compute its convex hull,
- and pass it to a ExtractPolygonalPrismData object.
Finally, we want to segment the remaining point cloud into separate clusters. For a table plane, this gives us table top object segmentation.
The basic idea is to use a region growing approach that cannot "grow" / connect two points with a high distance, therefore merging locally dense areas and splitting separate clusters.
// Create EuclideanClusterExtraction and set parameters
pcl::EuclideanClusterExtraction<PointT> ec;
ec.setClusterTolerance (cluster_tolerance);
ec.setMinClusterSize (min_cluster_size);
ec.setMaxClusterSize (max_cluster_size);

// set input cloud and let it run
ec.setInputCloud (input);
ec.extract (cluster_indices_out);

Very straightforward.