How does a good feature look like?

Federico Tombari, University of Bologna
PCL TUTORIAL @ICRA’13
A feature...what?

- Feature is a compact – but rich – representation of our (3D) data
- It is designed to be invariant (or robust) to a specific class of transformations and/or set of disturbances

Etymology
From Anglo-Norman *futre*, from Old French *faute*, from Latin *factura*.

Pronunciation
- (UK) IPA: /ˈfɪ.tʃər/. X-SAMPA: #tʃ@r
- Audio
- Rhyming: -tʃə(r)

Noun
feature (*plural* *features*)
1. (obsolete) One's structure or make-up, form, shape, bodily proportions.
2. An important or main item.
3. *(media)* A long, prominent, article or item in the media, or the department that creates them; frequently used technically to distinguish content from news.
4. Any of the physical constituents of the face (eyes, nose, etc.).
5. *(computing)* A beneficial capability of a piece of software.
6. The cast or structure of anything, or of any part of a thing, as of a landscape, a picture, a treaty, or an essay; any marked peculiarity or characteristic; as, one of the features of the landscape.
7. *(archaeology)* Something discerned from physical evidence that helps define, identify, characterize, and interpret an archaeological site.
8. *(engineering)* Characteristic forms or shapes of a part. For example, a hole, boss, slot, cut, chamfer, or fillet.
3D keypoints are

- **Distinctive**, i.e. suitable for effective description and matching (*globally definable*)
- **Repeatable** with respect to point-of-view variations, noise, etc... (*locally definable*)

Usually scale-invariance is not an issue (but better if each feature is extracted together with its characteristic scale)
(for now) a small set of detectors specifically proposed for 3D point clouds and range maps

- Intrinsic Shape Signatures (ISS) [Zhong ICCVW09]
- NARF [Steder ICRA11]
- (Uniform Sampling)

Several detectors «derived» from 2D interest point detectors

- Harris (2D, 3D, 6D) [Harris AVC88] - CD
- SIFT [Lowe IJCV04] - BD
- SUSAN [Smith IJCV95] - CD
- AGAST [Mair ECCV10] - CD
In 3D scale is (generally) not an issue

BUT

The characteristic scale is still an important property of a 3D keypoint

Several recent proposals, two main categories [Tombari IJCV13]

- **Fixed-scale detectors**: all keypoints are detected at a specific scale (input parameter)
 - Local Surface Patches (LSP) [Chen07]
 - Intrinsic Shape Signatures (ISS) [Zhong09]
 - KeyPoint Quality (KPQ) [Mian10]
 - Heat Kernel Signature (HKS) [Sun09]
Adaptive-scale detectors: specific scale-space analysis to detect salient structures at multiple scales, associating each keypoint a **characteristic scale**

- Scale space on the cloud/mesh
 - KPQ Adaptive Scale (KPQ-AS) [Mian10]
 - Salient Points (SP) [Castellani08]
 - Laplace-Beltrami Scale-Space (LBSS) [Unnikrishnan08]
 - MeshDoG [Zaharescu12]
- Scale space on voxel maps
 - 3D-SURF [Knopp10]
- Scale space on range images
 - Scale-dependent local shape detector [Novatnack08]
 - HK Maps [Akagunduz07]

Need for performance assessment [Tombari13]

- Locality repeatability / Quantity
- Scale repeatability
- Efficiency
- www.vision.deis.unibo.it/keypoints3d
Intrinsic Shape Signatures

- Exploits the covariance matrix
 \[M(p_i) = \frac{1}{k} \sum_{j=1}^{k} \rho_i (p_j - p_i)(p_j - p_i)^T \]

- Let its eigenvalues, in decreasing magnitude order, be
 \[\lambda_1, \lambda_2, \lambda_3 \]

- The pruning step discards points with similar spreads along the principal directions, where a repeatable LRF cannot be defined
 \[\frac{\lambda_2(p)}{\lambda_1(p)} < Th_{12} \land \frac{\lambda_3(p)}{\lambda_2(p)} < Th_{23} \]

- Saliency is the magnitude of the third eigenvalue
 \[\rho(p) = \lambda_3(p) \]

- It includes only points with large variations along each principal direction

- “Winner” of PCL 3D detector evaluation in [Filipe 2013]
Intrinsic Shape Signatures

How Does a Good Feature Look Like?
How Does a Good Feature Look Like?

Federico Tombari

pcl::PointCloud<int> indices;
pcl::UniformSampling<pcl::PointXYZ> uniform_sampling;
uniform_sampling.setInputCloud (cloud);
uniform_sampling.setRadiusSearch (0.05f);
uniform_sampling.compute (indices);

pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints (new pcl::PointCloud<pcl::PointXYZ>());
pcl::ISSKeypoint3D<pcl::PointXYZ, pcl::PointXYZ> iss_detector;
iss_detector.setSalientRadius (support_radius);
iss_detector.setNonMaxRadius (nms_radius);
iss_detector.setInputCloud (cloud);
iss_detector.compute (*keypoints);
Local Reference Frame

- 3 orthogonal unit vectors defined upon a local support
- Goal:
 - invariant to rotations and translations
 - robust to noise and clutter
- Common approach to deal with ambiguities in the LRF definition
 - Define **multiple LRFs** at each keypoint, providing multiple descriptions of the same keypoint
 - Cons:
 - more descriptors to be computed and matched (less efficient)
 - ambiguity pushed to the matching stage
 - Eg. EVD of the scatter matrix computed over the support as used in [Mian10] [Novatnack08] [Zhong09], provides 3 repeatable directions but **no repeatable sign** [Tombari10]
 - 4 different RFs can be obtained by enforcing the right-hand rule
LRF: example

```cpp
pcl::PointCloud<pcl::ReferenceFrame>::Ptr lrfs(new pcl::PointCloud<pcl::ReferenceFrame>());

pcl::BOARDLocalReferenceFrameEstimation<pcl::PointXYZ, pcl::Normal, pcl::ReferenceFrame> lrf_est;
lrf_est.setRadiusSearch (0.5f);
lrf_est.setInputCloud (keypoints);
lrf_est.setInputNormals (cloud_normals);
lrf_est setSearchSurface (cloud);

lrf_est.compute (*lrfs);
```
compact representations aimed at detecting similarities between surfaces (*surface matching*)

based on the support size

- **Pointwise descriptors**
 - Simple, efficient, but not robust to noise, often not descriptive enough

- **Local/Regional descriptors**
 - Well suited to handle clutter and occlusions
 - Can be vector quantized in codebooks
 - Segmentation, registration, recognition in clutter, 3D SLAM

- **Global descriptors**
 - Complete information concerning the surface is needed (no occlusions and clutter, unless pre-processing)
 - Higher invariance, well suited for **retrieval and categorization**
 - More descriptive on objects with poor geometric structure (household objects..)
Local descriptors

- Descriptive representation of the local neighborhood (support) of a point
- Local descriptors can embed also intensity/color information (RGB-D descriptors)
- Matching descriptions yields point-to-point correspondences between two surfaces
Spin Images

- Spin Image descriptor [Johnson99] is arguably the most popular 3D local descriptor
- 2D histograms accumulating points by spinning around a repeatable axis (normal)

- Rotation and translation invariant, not scale invariant
- Appreciates uniform surface sampling
- Variants: compressed-SI (PCA)
- `pcl::SpinImageEstimation`

![Effect of bin size](courtesy of Johnson & Hebert)
PFH [Rusu08] computes 3 values for each pair in the neighbourhood
- Complexity $O(k^2)$, extremely slow.

pcl::PFHEstimation
- For each pair, it computes a LRF u-v-w centred on one point p_s as
 - The normal $u = n_s$
 - The cross product between n_s and the vector $(p_t - p_s)$ $v = n_s \times (p_t - p_s)$
 - The cross product between the previous vectors $w = u \times v$
- Then, it computes and accumulates

$$
\alpha = \arccos(v \cdot n_t)
$$

$$
\phi = \arccos\left(u \cdot \frac{(p_t - p_s)}{\|p_t - p_s\|_2}\right)
$$

$$
\theta = \arctan(w \cdot n_t, u \cdot n_t)
$$
Fast PFH

- FPFH [Rusu09]: approximation of PFH with linear complexity in the number of neighbors
 - Compute SPFH (Simplified PFH) between the keypoint and every neighbor
 - Combine the weighted SPFHs to form the final Fast PFH

\[
\text{FPFH} (p_i) = \text{SPFH} (p_i) + \frac{1}{k} \sum_{j=1}^{k} \frac{1}{\omega_j} \text{SPFH} (p_j)
\]

- \textit{pcl::FPFHEstimation, pcl::FPFHEstimationOMP}
How Does a Good Feature Look Like?

Federico Tombari

Signatures of Histograms of Orientations [Tombari10]

Inspired by SIFT: computation of a geometric coarsely localized local set of histograms of first-order derivatives.

The local support is partitioned by means of a spherical grid.

For each volume of the grid, an histogram of the cosines of the angle θ_i between the normal at each point and the normal at the feature point is computed.

Quadrilinear interpolation to smooth out quantization distortions.

Normalization of the descriptor for robustness towards point density variations.

$pcl::SHOTEstimation, pcl::SHOTEstimationOMP$
SHOT for RGB-D data

- SHOT for RGB-D data [Tombari11] deploys
 - Shape, as the SHOT descriptor
 - Texture, as histograms in the Lab space
 - Pairs of Lab triplets (center point and its neighbor) can be compared using specific metrics (CIE94, CIE2000, ..), although the L1-norm proved to be a good trade-off

- `pcl::SHOTColorEstimation, pcl::SHOTColorEstimationOMP`
How Does a Good Feature Look Like?

Federico Tombari

```cpp
pcl::PointCloud<pcl::SHOT352>::Ptr descriptors = new pcl::PointCloud<pcl::SHOT352>();

pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> describer;

describer.setRadiusSearch (support_radius);
describer.setInputCloud (keypoints);
describer.setInputNormals (normals);
describer setSearchSurface (cloud);

describer.compute (*descriptors);
```
How Does a Good Feature Look Like?

Summing up..

<table>
<thead>
<tr>
<th>Method</th>
<th>Category</th>
<th>Unique LRF</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struct. Indexing [Stein92]</td>
<td>Signature</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PS [Chua97]</td>
<td>Signature</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3DPF [Sun01]</td>
<td>Signature</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3DGSS [Novatnack08]</td>
<td>Signature</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>KPQ [Mian10]</td>
<td>Signature</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3D-SURF [Knopp10]</td>
<td>Signature</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SI [Johnson99]</td>
<td>Histogram</td>
<td>RA</td>
<td>No</td>
</tr>
<tr>
<td>LSP [Chen07]</td>
<td>Histogram</td>
<td>RA</td>
<td>No</td>
</tr>
<tr>
<td>3DSC [Frome04]</td>
<td>Histogram</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ISS [Zhong09]</td>
<td>Histogram</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>USC [Tombari10]</td>
<td>Histogram</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PFH [Rusu08]</td>
<td>Histogram</td>
<td>RA</td>
<td>No</td>
</tr>
<tr>
<td>FPFH [Rusu09]</td>
<td>Histogram</td>
<td>RA</td>
<td>No</td>
</tr>
<tr>
<td>Tensor [Mian06]</td>
<td>Histogram</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RSD [Marton11]</td>
<td>Histogram</td>
<td>RA</td>
<td>No</td>
</tr>
<tr>
<td>HKS [Sun09]</td>
<td>Other</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>MeshHoG [Zaharescu09]</td>
<td>Hybrid</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SHOT [Tombari10]</td>
<td>Hybrid</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Global descriptor taxonomy

- **Taxonomy for global descriptors [Akgul09]**
- **Histogram-based**: accumulators of local or global features
 - Robustness, paid off with less descriptive
 - **Shape Distributions [Osada02]**, 3D Shape Histograms [Ankerst99], Orientation Histograms [Horn84], **Viewpoint Feature Histogram (VFH) [Rusu10]**, **Clustered-VFH [Aldoma11]**, OUR-CVFH [Aldoma12]
- **Transform-based**: Transform geometric information in a domain where representation is compact and invariant
 - Compact descriptors by retaining only a subset of (e.g., the first) coefficients
 - 3D Fourier Transform [Dutagaci05], Angular Radial Tr. [Ricard05], 3D Radon Tr. [Daras04], **Spherical Harmonics [Kazhdan03]**, wavelets [Laga06]
- **2D view-based**: 3D surface is transformed into a set of 2D projections (range maps)
 - 2D image descriptors are computed on each 2D view
 - Fourier descriptors [Vranic 04], Zernike moments [Chen03], SIFT [Ohbuchi08], SURF, ..
- **Graph-based**: A graph is built out of the surface
 - Transform the graph into a vector-based numerical description
 - topology-based [Hilaga01], Reeb graph [Tung05], skeleton-based [Sundar03]
Problem: find the kNN of a n-dimensional query vector q within a set of m candidates (same size)
 - Variant: find all neighbors within an hypersphere of radius r centered on q

To speed up the brute force, fast indexing schemes:
 - Kd-tree [Freidman77]
 - Hierarchical k-means tree [Fukunaga75]
 - Locality Sensitive Hashing (LSH) [Andoni06]

Kd-tree slows down at high dimensions (too many nodes, long exploration time), need for approximate kd-tree search:
 - Best Bin First [Beis97]
 - Randomized kd-tree [Silpa-Anan08]
 - FLANN [Muja09]

Example: pcl::KdTreeFLANN<pcl::SHOT352> matcher; (in pcl_kdtree module)
 (also have a look at pcl::search::FlannSearch)
Thanks to: Samuele Salti, Aitor Aldoma