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Data representations in PCL 

Ã PCL can deal with both organized (e.g. range maps) 

and unorganized point clouds 

Ä if the underlying 2d structure is available, 

efficient schemes can be used (e.g. integral 

images instead of kd-tree for nearest neighbor 

search) 

Ã Both are handled by the same data structure 

(pcl::PointCloud, templated thus highly 

customizable) 

Ä Points can be XYZ, XYZ+normals, XYZI, XYZRGB, 

... 

Ä Support for RGB-D data 

Ã Voxelized representations are implemented by 

pcl::PointCloud + voxelization functions (e.g. voxel 

sampling) 

Ä no specific types for voxelized maps 

Ã Currently rather limited support for 3D meshes 
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Object Recognition and data 

representations 

Ã Usually Object Recognition in clutter is done on 2.5 data (model views against scene views) 

Ã Can be done also 3D vs 3D, although scenes are usually 2.5D (and 3D vs. 2.5D does not 

work good) 

Ã When models are 3D, we can render 2.5D views simulating input from a depth sensor:  

pcl::apps::RenderViewsTesselatedSphere render_views;  

render_views.setResolution (resolution_);  

render_views.setTesselationLevel (1); //80 views  

render_views.addModelFromPolyData (model); //vtk model  

render_views.generateViews ();  

std::vector< pcl::PointCloud<pcl::PointXYZ>::Ptr > views;  

std::vector < Eigen::Matrix4f > poses;  

render_views.getViews (views);  

render_views.getPoses (poses);  



Descriptor Matching 

Ã Typical paradigm for finding similarities between two point clouds 

1. Extract compatct and descriptive representations (3D descriptors) on each cloud 

(possibly over a subset of salient points)  

2. Match these representations to yield (point-to-point) correspondences 

Ã Applications: 3D Object recognition, cloud registration, 3D SLAM, object retrieval, .. 
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pcl::keypoints 

Ã 3D keypoints are 

Ä Distinctive, i.e. suitable for effective description and matching (globally definable) 

Ä Repeatable with respect to point-of-view variations, noise, etcé (locally definable) 

Ã The pcl::keypoint module includes:  

Ä A set of detectors specifically proposed for 3D point clouds and range maps 

Â Intrinsic Shape Signatures (ISS) [Zhong 09]  

Â NARF [Steder 11] 

Â (Uniform Sampling, i.e. voxelization) 

Ä Several detectors «derived» from 2D interest point  

  detectors 

Â Harris (2D, 3D, 6D) [Harris 88] 

Â SIFT [Lowe 04] 

Â SUSAN [Smith 95] 

Â AGAST [Mair 10] 

Â ... 
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Global vs local descriptors 

Ã Pcl::Features: compact representations aimed at detecting 

similarities between surfaces (surface matching) 

Ã based on the support size 

Ä Pointwise descriptors 

Â Simple, efficient, but not robust to noise, often not descriptive 

enough (e.g. normals, curvatures, ..) 

Ä Local/Regional descriptors 

Â Well suited to handle clutter and occlusions 

Â Can be vector quantized in codebooks 

Â Segmentation, registration, recognition in clutter, 3D SLAM 

Ä Global descriptors 

Â Complete information concerning the surface is needed (no 

occlusions and clutter, unless pre-processing) 

Â Higher invariance, well suited for retrieval and categorization 

Â More descriptive on objects with poor geometric structure 

(household objects..) 



Summing up.. 

 
Method  Category  Unique LRF  Texture  

Struct. Indexing [Stein92]  Signature No  No  

PS [Chua97]  Signature No  No  

3DPF [Sun01]  Signature No  No  

3DGSS [Novatnack08]  Signature No No  

KPQ [Mian10]  Signature No  No  

3D-SURF [Knopp10]  Signature Yes  No  

SI [Johnson99]  Histogram RA  No  

LSP [Chen07]  Histogram  RA  No  

3DSC [Frome04]  Histogram No  No  

ISS [Zhong09]  Histogram No  No  

USC [Tombari10] Histogram Yes No 

PFH [Rusu08]  Histogram RA  No  

FPFH [Rusu09]  Histogram RA  No  

Tensor [Mian06]  Histogram No  No  

RSD [Marton11] Histogram RA No 

HKS [Sun09]  Other  - No  

MeshHoG [Zaharescu09]  Hybrid Yes  Yes  

SHOT [Tombari10] Hybrid Yes  Yes  

PFHRGB Histogram Yes Yes 

: in PCL 



3D Object Recognition in 

clutter 

Ã Definition (typical setting):  

A. a set of 3D models (often, in the form of views) 

B. one scene (at a time) including one or more models, possibly (partially) 

occluded, + clutter. 

Ã Models can be present in multiple instances in the same scene 

Ã Goal(s):  

Ä determine which model is present in the current scene 

Ä (often) estimate the 6DoF pose of the model wrt. the scene 

Ã Applications: industrial robotics, quality control, service robotics, autonomous 

navigation, .. 
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Correspondence Grouping 

Ã Problem:  

Ä given a set of point-to-point correspondences ὅ ὧȟὧȟȢȢȟὧ   

Â where ὧ ὴȟȟὴȟ  

Ä divide C intro groups (or clusters) each holding consensus for a specific 6DOF 

transformation 

Ä non-grouped correspondences are considered outliers 

 

Ä General approach: RANSAC [Fischler 81] 

Â the model is represented by the 6DOF transformation obtained via Absolute 

Orientation, its parameters being a 3D rotation and a 3D translation 

Ä Approaches include specific geometric constraints deployed in the 3D space 
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Geometric consistency 

Ã Enforcing geometric consistency between pairs of correspondences [Chen 07] 

Ä Choose a seed correspondence ὧ  

Ä Test the following pairwise geometric constraint between ὧ and all the other 

correspondences ὧ: 

ὴȟ ὴȟ ὴȟ ὴȟ ‐ȟᶅὮ 

Ä Add each correspondence holding the constraint to the group seeded by ὧ (and 

remove it from the list) 

Ä Eliminate groups having a small consensus set 
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Geometric consistency (2) 

Ã GC enforces a 1D constraint over a transformation with 6 DoF -> weak constraint, 

high number of ambiguities (might fail if the number of correspondences is low!) 

Ã Pro: extremely simple and efficient 

Ã Use if many correspondences, noisy data 

 

pcl :: CorrespondencesPtr  m_s_corrs ; //fill it  

std ::vector< pcl ::Correspondences> clusters; //output  

pcl :: GeometricConsistencyGrouping <PT, PT> gc_clusterer ;  

gc_clusterer.setGCSize  ( cg_size ); //1st param  

gc_clusterer.setGCThreshold  ( cg_thres ); //2nd param  

gc_clusterer.setInputCloud  ( m_keypoints );  

gc_clusterer.setSceneCloud  ( s_keypoints );  

gc_clusterer.setModelSceneCorrespondences  ( m_s_corrs );  

gc_clusterer.cluster  (clusters);  

(m_s_corrs are correspondences with indices to m_keypoints and s_keypoints) 


